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Non-reciprocal robotic metamaterials
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Non-reciprocal transmission of motion is potentially highly beneficial to a wide range of

applications, ranging from wave guiding to shock and vibration damping and energy har-

vesting. To date, large levels of non-reciprocity have been realized using broken spatial or

temporal symmetries, yet mostly in the vicinity of resonances, bandgaps or using non-

linearities, thereby non-reciprocal transmission remains limited to narrow ranges of fre-

quencies or input magnitudes and sensitive to attenuation. Here, we create a robotic

mechanical metamaterials wherein we use local control loops to break reciprocity at the level

of the interactions between the unit cells. We show theoretically and experimentally that

first-of-their-kind spatially asymmetric standing waves at all frequencies and unidirectionally

amplified propagating waves emerge. These findings realize the mechanical analogue of the

non-Hermitian skin effect. They significantly advance the field of active metamaterials for non

hermitian physics and open avenues to channel mechanical energy in unprecedented ways.
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Reciprocity is a fundamental property of linear, time-reversal
invariant physical systems, entailing that their response
functions are symmetrical, namely that signals are trans-

mitted symmetrically between any two points in space1–3. In
other words, if one sends an electromagnetic, acoustic, or
mechanical signal through a material in one direction, one can
also send it in the opposite direction. While breaking reciprocity
has been a long-standing challenge in electromagnetics, there has
been over the last few years an explosion of interest for breaking
reciprocity in optical4–7 and micro8 waves without magnetic
fields, and beyond electromagnetism, i.e., in acoustics9, quantum
systems10,11, and mechanics12,13, thus creating new tools to
engineer a novel generation of devices and materials that guide,
damp, or control energy and information. Non-reciprocity has
been achieved by using passive structures combining
broken spatial symmetries and nonlinearities13,14 and using active
time-modulated components that break time-reversal
symmetry3,12,15–17. These strategies have led to large levels of
nonreciprocal isolations, but with input magnitudes or input
frequencies that are limited to narrow ranges, and are sensitive to
attenuation.

Here, inspired by recent developments in robotics18,19 and
active metamaterials12,16,17,20–22, we create a robotic mechanical
metamaterial that uses distributed active control to break reci-
procity at the level of the interactions between the building blocks
themselves. This work builds on the field of active metamaterials,
yet with a key new twist: while active metamaterials only have
actuating elements, robotic metamaterials include a combination
of local sensing, computation, communication, and actuation. As
a result, they feature unique wave phenomena, namely asym-
metric modes at all frequencies and unidirectional amplification,
and in turn realize large, broadband, linear, and self-amplified
nonreciprocal transmission of mechanical waves. These findings
realize the classical counterpart of the so-called non-Hermitian
skin effect23–28.

Results
Nonreciprocal wave equation. We first investigate theoretically
the emergent properties in a mass-and-spring model with non-
reciprocal springs (Fig. 1a). For reciprocal mechanical

structures1,29,30, the stiffness matrix—relating displacements to
forces—is symmetrical by virtue of the Maxwell–Betti reciprocity
theorem1. In particular, for a simple spring, left-to-right and
right-to-left stiffnesses are equal: kL→R= kR→L= k where kL→R

and kR→L are defined as kL→R= FL→R/(uR− uL) and kR→L=
FR→L/(uL− uR), where FL (FR) is the force on the left (right)
spring and uL (uR) the displacement of the left (right) spring.
Here, we consider a special mass-and-spring model, where the
left-to-right and right-to-left stiffnesses differ kL!R ¼
kð1þ εÞ ≠ kR!L ¼ kð1� εÞ (Fig. 1a). We obtain the following
continuum equation (Methods, Mass-and-spring model with
nonreciprocal springs)

1
c2
d2u
dt2

� d2u
dx2

þ 2ε
p
du
dx

¼ 0; ð1Þ

where c ¼ p
ffiffiffiffiffiffiffiffiffi
k=m

p
and where p is the interparticle distance. In

the case of reciprocal interactions (ε= 0), Eq. (1) becomes the
wave equation, which admits dispersion-free mechanical waves of
group and phase velocity c. For nonreciprocal interactions (ε ≠ 0),
the first-order term in Eq. (1) breaks inversion symmetry u →
−u, x → −x. This asymmetry has dramatic consequences on the
nature of the mechanical waves, which can be readily seen from
the solutions of this equation both in the frequency domain and
in real space. In the frequency domain, solutions consist of a
linear combination of the functions exp(i(ωt−q±x)), where the
wave vector q± ¼ i

p ðε±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � ω2p2=c2

p Þ. For small frequencies
ω < c|ε|/p, these solutions are exponentially localized standing
waves, while for large frequencies ω > c|ε|/p, they are localized
oscillatory standing waves with an exponential envelope (Fig. 1b).
Crucially, for ε > 0 (ε < 0), the imaginary part is always positive
(negative), so these solutions are always localized on the right
(left) edge. In real space, we obtain the Green’s function of Eq. (1)
(Methods, Mass-and-spring model with nonreciprocal springs
and Supplementary Information Note 1), which is an asymmetric
step function propagating at a velocity c with a wave front
magnitude given by exp(εct/p)/2 (exp(−εct/p)/2) for x > 0 (x < 0).
For any value of ε > 0 (ε < 0), the initial pulse is amplified for
forward (backward) propagation and attenuated for backward
(forward) propagation (Fig. 1c). This behavior can be intuitively
understood from the structure of Eq. (1): work is injected in
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Fig. 1 Asymmetric and unidirectionally amplified waves in a nonreciprocal mass-and-spring model. a Schematic representation of the nonreciprocal mass-
and-spring model. b Magnitude of the solutions of Eq. (1) in the frequency domain exp(i(ωt−q±x)) vs. spatial coordinate, for three different frequencies.
c Green’s function of Eq. (1) vs. time and spatial coordinate. In (b) and (c), ε= 0.9 and c= 0.5
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(extracted from) the wave front when 2ε
p
du
dx is negative (positive),

whereby the system is constantly driven out-of-equilibrium.
This leads to waves with two unprecedented features, namely
spatial asymmetry at all frequencies and unidirectional
amplification.

Nonreciprocal robotic metamaterial. In order to create a system
with such effective nonreciprocal local interactions, a necessary
but not sufficient condition is to add external forces. Our strategy
for achieving such nonreciprocal interactions is to apply strain-
dependent forces at each site, i.e., forces that are proportional to
the strain in the neighboring springs22. These local forces inject—
linear or angular—momentum and work into the mechanical
degrees of freedom. To do so, we built a metamaterial made of ten
“robotic” building blocks (Fig. 2a) with rotational degrees of
freedom. Each robotic unit cell consists of a mechanical rotor
with a rotational moment of inertia J, of a local control system,
and is mechanically coupled to its neighbors via pre-stretched
elastic beams resulting in a torsional stiffness C (Fig. 2b, c). The
control system measures the rotor’s angular position θL, collects
that of its right neighbor θR, and applies an additional torque on
the left rotor τM= Cf(α)(θL− θR). The parameter α is a dimen-
sionless feedback parameter. The feedback gain f(α) plays a
similar role as the parameter ε in the model of Fig. 1, yet with a
subtle difference. In the experiment, the active force is applied
only on the right neighbor, whereas in the model, the active force
is applied on both left and right neighbors (Methods, Mass-and-
spring model with nonreciprocal springs). We calibrate the tor-
que vs. angle response between two unit cells and find, as
expected, that CL→R= C differs from CR→L= C(1− f(α))
(Fig. 2d), therefore breaking reciprocity. While such tunable
nonreciprocal response is not surprising—ultimately it is achieved
at the level of each unit cell’s microcontroller—the novelty of our
approach lies in coupling many such robotic nonreciprocal unit
cells together and making use of the fact that the bandwidth of

the electronic components is much larger than that of the
mechanical degrees of freedom. As a result of the interaction
between multiple robotic building blocks, unique nonreciprocal
wave phenomena emerge, as we will see in the following sections.

To test the predictions of the mass-and-spring model, we now
investigate experimentally and numerically the stationary
response of our ten-unit cells robotic metamaterial to harmonic
excitations on the left and on the right edges over a wide range of
input frequencies (Methods, Calibration and measurements). In
the reciprocal case α = 0 (Fig. 3a), we observe from experiments
that the amplitudes of oscillation of each unit cell either decay
exponentially (low frequencies) or oscillate (high frequencies)
from one unit cell to another. We model the robotic metamaterial
as 10 coupled oscillators interacting with each other via
nonreciprocal stiffnesses CL→R and CR→L. To do so, we take into
account additional effects such as the bending of the rubber bands
and the inherent damping of the oscillators and quantify them via
independent calibration (Methods, Calibration and measure-
ments). The model matches the observations very accurately
without any fit parameters until 3 Hz, above which the numerical
model is too simplistic to accurately capture internal vibrations of
the rubber bands (Methods, Numerical model of the robotic
metamaterial). For all actuation frequencies, we observe from the
model and the experiment that the responses to left and right
excitations is simply related to mirror symmetry, which
demonstrates that the metamaterial response is inherently
symmetrical. In contrast, in the nonreciprocal case α= 0.43
(Fig. 3b), we observe a strong asymmetry in the angular
displacement profiles. When excited from the right, the response
is more localized close to the excitation point and when excited
from the left, the response is more extended toward the right and
even increases for large frequencies. This asymmetry is further
quantified by the spatial decays of the profiles, which are opposite
in the reciprocal case α= 0 (Fig. 3c) and differ in the
nonreciprocal case α= 0.43 (Fig. 3d), regardless of the driving
frequency. Figure 3d therefore demonstrates the emergence of
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Fig. 2 Robotic metamaterial with nonreciprocal interactions. a Robotic metamaterial made of 10 unit cells mechanically connected by soft elastic beams (i).
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asymmetric modes at all frequencies, as predicted by the solutions
of Eq. (1) and reminiscent of the non-Hermitian skin effect23–28.

Does such strong asymmetry lead to nonreciprocal transmis-
sion? To address this question, we calculate the transmissions
TL!R ¼ 20 log10 j�θoutR =�θinL j and TR!L ¼ 20 log10 j�θoutL =�θinR j for var-
ious frequencies from the angular displacement profiles obtained
above. In the reciprocal case (α= 0), we observe a symmetrical
transmission, typical of a resonant low-pass filter, with a saturated
plateau of amplitude −37 ± 1 dB at small frequencies and a broad
peak corresponding to the system resonances beyond which the
transmission signal starkly decreases at 360 dB/decade (Fig. 3e).
For the nonreciprocal case (α= 0.43), the left-to-right and right-
to-left transmissions differ vastly—by more than 50 dB—over a
wide range of frequencies, from 0.001 to 5 Hz (Fig. 3f). Strikingly,
as opposed to previous observations in mechanical metamaterials
whose functionality decays with system size31,32, such nonreci-
procal isolation increases linearly with the system size (Fig. 3f—
inset). Therefore, the isolation of the system can be controlled by

varying the feedback α or by adding more unit cells, the latter
having the advantage of avoiding limitations in the maximal
torque applied by the control loop. Importantly, our metamaterial
is linearly stable over a wide range of feedback parameters (α <
0.93) (Methods, Numerical model of the robotic metamaterial).
Therefore, the existence of the asymmetric modes at all
frequencies leads to an extremely large level of nonreciprocal
transmission over a very large range of frequencies, a perfor-
mance that is unprecedented among wave-based physical
systems.

Since the nonreciprocal transmission is broadband, our robotic
metamaterial is in principle an excellent nonreciprocal device for
pulses, which have a broadband spectral signature. To demon-
strate this, we excite our metamaterial with half-sine shaped
pulses closely mimicking a pulse of amplitude 0.04 rad and
duration 100 ms, either from the left or right edge. In the
reciprocal case α= 0, the response is strictly the same regardless
of the excitation point (Fig. 4a–c). The pulses propagate across
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Fig. 3 Spatially asymmetric standing waves and broadband unidirectional transmission. Stationary response under sinusoidal excitations at the left (red
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the metamaterial, reach the opposite edge, and rapidly attenuate
upon reflection. After a short transient and before the first
reflection, the pulse amplitude decreases (Fig. 4c). By contrast, in
the nonreciprocal case α= 0.62 (Fig. 4d–f), the pulse attenuates
strongly when excited from the right and is amplified when
excited from the left. In the latter case, the pulse reaches the right
edge of the robotic metamaterial and remains localized in the
vicinity of this edge from where it slowly decays in time (see
Supplementary Fig. 7). To quantify the pulse attenuation, we
restrict our attention to the propagation before the first reflection
(Fig. 4c, f). We find that the unidirectional amplification is
controlled by the level of feedback α: the signal is amplified
(attenuated) for α > 0.5 (α < 0.5) (see Fig. 4f—inset). These
observations are in qualitative agreement with the behavior of
the Green’s function of Eq. (1) discussed above.

Discussion
To conclude, we have created a class of robotic mechanical
metamaterials that are embedded with nonreciprocal interactions

through local control loops. As a result, they feature a unique type
of wave phenomena, which show spatial asymmetry of standing
waves at all frequencies, leading to an unprecedented broadband
giant level of non-reciprocity, and which exhibit unidirectional
amplification of pulses. As opposed to existing metamaterials by
using nonlinearities or active components, where the non-
reciprocal effects tend to be suppressed by attenuation for large
system sizes31, the key new feature here is that nonreciprocal
waves are unidirectionally amplified, which guarantees robustness
against attenuation. Nonreciprocal robotic metamaterials could
be used to extract mechanical energy, allowing energy to flow
away from a source while preventing energy to flow back to it.
Therefore, we envision that further developments on non-
reciprocal robotic metamaterials will provide new vistas for
applications where unidirectional transmission of energy is useful,
e.g., for communication and sensing3,7,9,20,33,34, shock and
vibration damping, and energy harvesting13,17,21,35–37. Our study
opens up a plethora of future research directions, e.g., the
investigation of odd elasticity22, instabilities38, and non-
Hermitian physics23–28,39. Finally, we believe that recent
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developments in stimuli-responsive materials40,41 and robotics—
via MEMS or graphene origami19,42—will allow to embed active
control in materials as a smaller scale, for higher dimensions, and
beyond rotational degrees of freedom—e.g., for acoustics, flexural
waves, and quantum systems.

Methods
Mass-and-spring model with nonreciprocal springs. In this section, we describe
the mass-and-spring model with nonreciprocal interactions discussed in Fig. 1 of
the main text and derive its continuum limit (Eq. (1) of the main text). We then
calculate its solutions in the frequency domain as well as its Green’s function.

Consider a mass-and-spring model, where all masses m are equal and all the
springs are equivalent and of rest-length p. Newton’s second law reads

m
d2uj
dt2

¼ Fj�1!j þ Fjþ1!j; ð2Þ

where uj is the displacement of mass j and Fj−1→j= kj−1→j(uj−1− uj) (Fj+1→j=
kj+1→j(uj+1−uj)) is the force exerted by the spring between masses j−1 (j+ 1) and
j. In an ordinary reciprocal system, kj−1→j= kj→j−1= k, and the right-hand side of
Eq. (2) becomes k(uj−1+ uj− 2uj). By contrast, here we consider a special case
where the springs are nonreciprocal kj�1!j ¼ kð1þ εÞ ≠ kj!j�1 ¼ kð1� εÞ. In
such a model, Newton’s action–reaction third law is broken, which means that in
practice one needs to add local momentum at each site j to realize such a system.
The equation of motion for mass j becomes

m
d2uj
dt2

þ kð1þ εÞðuj � uj�1Þ þ kð1� εÞðuj � ujþ1Þ ¼ 0: ð3Þ
In order to study the behavior of such a system, it is useful to consider the

continuum limit, given by uj → u(x) and uj±1 → u(x) ± p(du/dx)+ p2/2(d2u/dx2),
and which then leads to Eq. (1) of the main text. In the case of a reciprocal system
(ε= 0), Eq. (1) becomes the wave equation, which admits dispersion-free
mechanical waves of group and phase velocity c. For arbitrary (ε ≠ 0), Eq. (1) is
analogous to the Telegrapher’s equation43,44, but where time and space have been
interchanged.

If we assume that the medium is infinite, the Floquet–Bloch theorem predicts
that plane wave solutions of the form u(x, t)= u0 expi (ωt− qx) are solutions of
Eq. (1), where ω is the radial frequency and q the wave vector. By inserting this
expression in Eq. (1), we obtain the following dispersion relation

�ω2

c2
þ q2 � 2εi

p
q ¼ 0: ð4Þ

Therefore, for a given ω, solutions are of the form u(x, t) = exp(iωt)exp(−iq±x),

where q ± ¼ i
p ε±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � p2ω2

c2

q� �
. This result is discussed in the main text.

We calculate the Green’s function of Eq. (1) by using Fourier–Laplace
transforms (see Supplementary Note 1) and find

uðx; tÞ ¼ eεx=p

2
Θ t � jxj

c

� �
J0 ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 � jxj2

q
p

0
@

1
A� ðct � jxjÞ2

c2t2 � jxj2 J2 ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 � jxj2

q
p

0
@

1
A

0
@

1
A;

ð5Þ
where Θ is the Heaviside step function and where Jk are Bessel functions of the first
kind. This solution predicts that a pulse in x= 0 at time t= 0 leads to an
asymmetric step function propagating with an exponentially increasing
(decreasing) amplitude (see Fig. 1c of the main text) for forward (backward)
propagation. In addition, we can rationalize this behavior by restricting our
attention to the moving frame, that is, |x|= ct, we find

umovingframeðtÞ ¼
1
2 expεct=p for x > 0
1
2 exp� εct=p for x < 0;

(
ð6Þ

which is discussed in the main text. Note that in the limit ε → 0, Eq. (1) becomes
the 1D wave equation. Our solution is consistent with this limit; since J0(0)= 1 and
J2(0)= 0, Eq. (5) becomes the well-known Green’s function for the 1D wave

equation45 uðx; tÞ ¼ 1
2Θ t � jxj

c

� �
.

Realization of the robotic mechanical metamaterial. The 1D robotic mechanical
metamaterial shown in Fig. 2a of the main text consists of a chain of mechanically
coupled oscillators, each of which is combined with a minimal robotic system.
These robotic unit cells, of dimensions 54 mm × 54mm × 90mm, are exact
duplicates of each other. In this section, we provide details about the mechanical,
electromechanical, and software characteristics of these building blocks.

Each oscillator is made up of (i) a 3D printed arm (ABS, red part in
Supplementary Fig. 2a); (ii) two stainless-steel bolts and four nuts (M6) fastened to
each side of the arm; (iii) the shaft of a coreless DC motor (Motraxx CL1628,
blue part in Supplementary Fig. 2a); (iv) a custom-made aluminum shaft
extension connected to the disk of an optical angular encoder (Broadcom HEDR-
55L2-BY09, yellow part in Supplementary Fig. 2a). The total moment of inertia

J= 27.550 ± 0.08 μkg m2 and the damping coefficient γ= 31.16 ± 2.34 μN sm have
been determined via independent calibration measurements.

The oscillators are mechanically coupled to each other by two soft elastic beams
made of vinylpolysiloxane (Elite double 8, Young’s modulus E= 0.25 MPa). The
elastic beams are pre-stretched by 30% to avoid buckling when arms extremities
come closer to each other. The structure of the elastic beams, shown in
Supplementary Fig. 2b, c, is laser cut from a 2-mm thin cast sheet. The empty
squares of the elastic structure are used to attach the elastic beam to the square-
shaped protuberances of the oscillator arms. The square shape prevents any
rotation of the elastic structure around its connection. In between each square, the
elastic beam has an elongated hexagonal shape, with a maximum thickness of 6
mm and a minimum thickness of 1 mm.

When the oscillators rotate, the elastic beams can stretch and contract, with the
deformations localized at the thin necks. Since the squared connection does not
allow any sliding of the elastic structure on the oscillator’s arm, the elastic beam
also undergoes bending deformations localized at the think necks. We describe the
effect of these deformations on the energy of the system as follows: when the
rotations of neighboring oscillators θL and θR are symmetrical (θL=−θR), the
elastic links primarily stretch/contract, and when the deformation of the
neighboring oscillators is antisymmetical (θL= θR), the links primarily bend. The
energy of these two deformation modes can be expressed as (C/2)(θL− θR)2 for the
symmetrical mode and (C′/2)(θL+ θR)2 for the antisymmetrical mode. The
torsional stiffnesses associated with these two deformation modes C and C′ differ.
We optimized the geometry such that C′= C (Supplementary Fig. 2c), see below
for calibration. Note that the geometry to guarantee that C′= C introduces
unavoidable spurious vibrational effects, which are hard to control and which
effectively reduce the stiffness C at large frequencies (>3 Hz, see Supplementary
Fig. 5d).

The control system is made up of (i) an angular sensor (Broadcom HEDR-
55L2-BY09, yellow part in Supplementary Fig. 2a); (ii) a coreless DC motor
(Motraxx CL1628, blue part in Supplementary Fig. 2a) embedded in a cylindrical
heatsink (in dark gray in Supplementary Fig. 2a); (iii) a microcontroller (Arduino
ATmega32U4, integrated circuit in Supplementary Fig. 2a); (iv) a UART
connection receiving the angular position of the right unit cell and transmitting its
own angular position to the left unit cell.

Angular encoder: The angular sensor measures the position of the oscillator with
a precision of 14000 PPR (pulse per revolution), which translates into a precision of
4 × 10−4 rad.

Microcontroller: The microcontroller digitizes the encoder’s signal with an
angular resolution of 4 × 10−4 rad at a rate of 100 Hz and collects the angular
position of the unit cell’s right neighbor through a serial protocol (UART
connection) at a rate of 100 Hz. From a 9-bit timer, the microcontroller also builds
up a pulse-width modulation (PWM) signal, to control the motor. The
microcontroller is integrated to a custom-made electronic board that ensures
power conversion and wiring to the motor, encoder, and the neighboring unit cells.
The firmware of the microcontroller is uploaded from an external computer by
serial communication (USB port). Although the microcontroller is not required to
be connected to an external computer to function, if required, data can also be sent
to en external computer (rate 100 Hz) via the same serial communication.

DC motor: In order to apply a given torque, the motor is controlled by a PWM
signal. The PWM signal is sent to the motor and controls the generated torque with
a resolution of 0.008 mNm, up to a maximum torque of τ= 3.92 mNm. Note that
this maximum explains the saturation of the effective stiffness CR→L for large
values of the feedback parameter α in Fig. 2d in the main text.

Software: The basic algorithm of the software is depicted in Fig. 2c of the main
text and runs continuously at a rate of 100 Hz. Each microcontroller collects the
instantaneous angular position measures of its own angular sensor θL as well as the
instantaneous angular position θR of the right neighbor. From those two signals,
the microcontroller is programmed to output a PWM signal proportional to
g(θL− θR), where the constant g is a tunable gain parameter. This signal drives the
DC motor, which leads to a torque proportional to g(θL− θR), see below for
calibration.

Calibration and measurements. In order to perform measurements, the robotic
metamaterial is actuated by a servomotor (Hitec D930DW, see Supplementary
Fig. 3) controlled via a microcontroller (Arduino Mega 2560), interfaced to an
external computer. The servomotor can be attached on either side of the setup and
is mechanically connected to one oscillator via two green elastic structures (rec-
tangular shape, 6-mm thick, Elite double 32, Young’s modulus E= 1MPa,
resulting in a torsional stiffness 27.4 mNm/rad, see Supplementary Fig. 4). These
two elastic beams are sufficiently soft to ensure free rotations of the servomotor and
negligible friction.

The stiffness measurements shown in Fig. 2d of the main text have been
performed on two building blocks. The configuration of the setup is sketched in
Supplementary Fig. 4a (see also Supplementary Fig. 5a). The left (right) oscillator
was attached to a load cell (Instron 2530-5 N, resolution of 0.005 N, sampling
frequency of 500 Hz) at a fixed position θL= 0 (θR= 0), allowing us to measure the
torque, τR→L (τL→R). The right (left) oscillator was driven by the servomotor,
imposing an oscillatory angular displacement θR (θL) at the frequency 0.1 Hz and
amplitude 0.13 rad.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12599-3

6 NATURE COMMUNICATIONS |         (2019) 10:4608 | https://doi.org/10.1038/s41467-019-12599-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


As shown in Supplementary Fig. 5a–c, at small angles, the torque varies linearly
with the angular position τR→L= C0,R→LθR and τL→R= C0,L→RθL. Note that this is
also verified for angles up to 0.35 rad (not shown here). We therefore perform a
linear fit to the torque-angle curves to extract the values of C0,R→L and C0,L→R. In
the case α= 0, we find C0,R→L= C0,L→R= C0= 22.4 ± 0.4 mNm/rad
(Supplementary Fig. 5c). For α > 0, we find C0,R→L < C0,L→R (Supplementary
Fig. 5c). By using the same protocol at different excitation frequencies, we verified
that the stiffnesses C0,R→L and C0,L→R are different for α ≠ 0 for any actuation
frequency (see Supplementary Fig. 5d). Note that internal vibrations start to occur
at 3 Hz, which we suspect are responsible for the decrease of the measured
stiffnesses as the frequency increases.

Since our calibration experiments combine symmetric and antisymmetric
deformations, C0 is related to the stiffnesses C and C′ defined above as C0= C− C′.
Similarly, C0,R→L= CR→L− C′ and C0,L→R= CL→R− C′. We calibrated C′
independently by using a slightly different experimental configuration. To do this,
we connected rigidly the two oscillators such that they were moving with the same
angle θL= θR and measured the force applied on both oscillators (see
Supplementary Fig. 4b). We obtained a torsional stiffness C′= 1.71 ± 0.04 mN
m/rad, and as a result, C= 24.1 ± 0.4 mNm/rad as well as CR→L and CL→R shown
in Fig. 2d of the main text.

Finally, we calibrated the DC motor by fixing the position of the left oscillator
θL= 0 and measuring the torque τML exerted by the DC motor in the absence
of the elastic beams as a function of the position of the right oscillator θR (see
Supplementary Fig. 4c). As expected, we find that τML vs. θR is linear with a negative
slope (not shown here), and by using a linear fit, we determine the gain function
−κ(g) as a function of the feedback parameter g controlling the amplitude of the
PWM signal. For convenience, we rewrite κ(g)= Cf(α), where α is a dimensionless
feedback parameter, and f(α) a dimensionless gain function. We observe that f(α)≃
α is linear in the region α < 1 and saturates for larger α (see Fig. 2d and main text).

During experiments, the robotic metamaterial was mechanically excited at
different frequencies by using the servomotor. In order to remain within the
resolution limit of the angular encoder, yet to remain in the linear regime, we used
an excitation amplitude of 0.21 rad (0.11) for frequencies below (above) 3 Hz. In
the specific case of left excitations of the nonreciprocal metamaterial, given the
amplification of the signal, we used smaller excitation amplitudes of 0.04 rad. As a
result, the oscillation amplitude was always between 4 × 10−4 and 0.25 rad, well in
the linear regime. During experiments, we recorded the instantaneous angular
positions θj(t) of each oscillator j at a rate of 100 Hz.

The amplitude of oscillation �θj of each time series θj(t) was extracted from
these measurements by performing a Fourier series analysis on the signal

collected from the microcontrollers �θj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2j þ b2j

q
. The parameters aj and bj are

the first coefficients of the Fourier series aj ¼ 2
P

R t0þP
t0

θjðtÞcos 2πt
P

� �
dt and

bj ¼ 2
P

R t0þP
t0

θjðtÞsin 2πt
P

� �
dt, with P the period of the impinging signal and t0 the

initial time for the integration. Each experiment was performed over a minimum
of 10 periods for signals above 10−2 Hz and 5 periods for signals below 10−2 Hz.
The time t0 was carefully chosen such that the oscillations were stationary.

The amplitudes of oscillation as a function of the unit cell position are shown
for 2 different frequencies in Fig. 3a (α= 0) and Fig. 3b (α= 0.43) of the main text.
For frequencies lower than 3 Hz, the amplitude of oscillation decays exponentially.
To compare these exponential decays with the predicted modes of oscillation, we
superimposed the responses to left and right excitations by computing the angular

displacement field �θlfj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðalj þ arj Þ2 þ ðblj þ brj Þ2

q
, where alj and blj are the Fourier

coefficients for the left excitation and arj and brj are the Fourier coefficients for the
right excitation. We then fitted a double exponential decay of the form
�θlf ðjÞ ¼ D1e

d1 j þ D2e
d2 j , where D1, d1, D2, and d2 are fitting parameters. The two

decay rates d1 and c2 are plotted as green dots for different frequencies of actuation
in Fig. 3c (α = 0) and Fig. 3d (α = 0.43) of the main text.

The angular displacement fields were also used to quantify the transmission of
the signal (Fig. 3ef of the main text). For a given actuation frequency, the
transmission from one side of the robotic metamaterial to the other is expressed as

TR�>Lðf Þ ¼ 20 log10
�θoutL
�θinR

� �
and TL�>Rðf Þ ¼ 20 log10

�θoutR
�θinL

� �
; where �θinR and �θinL (�θoutR

and �θoutL ) correspond to the input (output) amplitude of the signal on the right
and left side of the metamaterial, respectively. For excitation frequencies below
3 Hz, the output displacement is close to the resolution of the angular encoders
4 × 10−4 rad. Instead of directly measuring the output amplitudes of oscillation,
we deduced them from an exponential decay fit over all oscillator amplitudes �θj .

Numerical model of the robotic metamaterial. In this section, we derive a model
that closely describes the response of the experimental implementation of our
robotic mechanical metamaterial and solve it numerically. We model a robotic
metamaterial consisting of N-coupled oscillators, with instantaneous angular
displacement θ ¼ ½θ1; :::; θN �. As discussed above, we assume that the deforma-
tions of the elastic rubber bands have both symmetric and antisymmetric com-
ponents, whose potential energy reads respectively Vs ¼ ðC=2ÞPN�1

j¼1 ðθj � θjþ1Þ2
and Va ¼ ðC′=2ÞPN�1

j¼1 ðθj þ θjþ1Þ2. Therefore, the resulting elastic torque on
oscillator j is τE = −∂(Vs + Va)/∂θj. In addition, we model dissipation as an

angular velocity-dependent term, τD ¼ �γ _θj, where γ is the damping coefficient.
Finally, we assume that the additional feedback torque exerted by the DC motors
is of the form τM= Cα(θj− θj+1), where α is the dimensionless feedback para-
meter. Altogether, assuming that each oscillator has a rotational moment of inertia
J, the equation of motion for the robotic metamaterial reads

_θ
€θ

" #
þ L

θ
_θ

	 

¼ 0; ð7Þ

where L is the 2N × 2N matrix

L ¼
0 �I

1
J K

γ
J I

" #
: ð8Þ

where 0 is the N ×N zero matrix, I is the N × N identity matrix, and K is the
matrix

K ¼
Cð1� αÞ þ C′ �Cð1� αÞ þ C′

�C þ C′ Cð2� αÞ þ 2C′ �Cð1� αÞ þ C′ 0

�C þ C′ Cð2� αÞ þ 2C′ �Cð1� αÞ þ C′

. .
. . .

. . .
.

0 �C þ C′ Cð2� αÞ þ C′ �Cð1� αÞ þ C′
�C þ C′ C þ C′

2
6666666664

3
7777777775
N ´N

:

ð9Þ
To solve for the dynamics upon excitations from the left (right) edge, we

impose the angular displacement of the leftmost (rightmost) oscillator θ1 (θN).
The numerical data plotted in Figs. 3 and 4 of the main text correspond to the
numerical solution of Eq. (8) by using the values of C= 24.1 mNm/rad,
C′= 1.71 mNm/rad, J= 27.55 μ kg m2, and γ= 31.16 μNm s calibrated above.
Unless specified otherwise in the main text, we used N= 10 and α= 0 or α=
0.43. As for the boundary conditions, for Fig. 3, we have used a periodic forcing
of the form θ1 ¼ �θ1e

iωt or θN ¼ �θNe
iωt , assumed stationary solutions of the form

θ ¼ �θeiωt , and solved the resulting algebraic equations numerically. For Fig. 4,
the input excitations θ1 and θ10 are half-sine shape pulses of magnitude 0.04 rad
and duration 100, which closely mimic a pulse excitation, and we have solved the
system of ordinary differential numerically. We have analyzed the numerical
data similarly to the experimental data (see above).

Eq. (7) is said to be linearly stable in time if the real part of all the eigenvalues
of �L is negative46. In Supplementary Fig. 6, we plotted the maximum of the real
part of the eigenvalues of �L as a function of the feedback parameter α. The
graph shows that the system is stable (unstable) in time for α < αc (α > αc) where
αc = 0.93 corresponds to an exceptional point. The precise value of αc depends
on C′/C and γ/J and converges to αc= 1 for C′/C= 0 and γ/J= 0.

Data availability
The source data underlying Figs. 1–4 are provided as source data files. The data that
support the plots within this paper and other findings of this study are available from the
corresponding author upon request.

Code availability
The codes that support the plots within this paper and other findings of this study are
available from the corresponding author upon request.
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